

PostgreSQL and backups
With a differential touch

Michael Paquier
PGConf Russia 2016

2015/02/03~2015/02/05, Moscow

Why backups?

In short

● Backups
– Methods

– Planning

– Retention

– Performance

● Restore
– Methods

– QE/QA

– Performance

About backups

● Replication

● Logical backups
– pg_dump

– pg_dumpall

● Physical backups
– pg_basebackup

– FS-level

– Etc.

Replication

● Live backups

● Fast

● Shortest restore time

● Those are not real backups!

● Delayed standbys leverage that.
– recovery_min_apply_delay in recovery.conf

– Delays transaction commits at replay

Logical backups

● pg_dump
– Use -Fc, custom format

● Compression with zlib
– After 3~5, usually no real difference

– Higher = More CPU

– Lower = More write I/O

● Other things
– Object-level granularity

– --jobs for parallel dump

● pg_dumpall -g

Logical - performance

● Single transaction

● Single backend – 1 CPU per each

● Fine for up to 100GB (still big)

● Postgres cache is fine

● Disk
– Throttled by disk I/O

– Better on separate disk than PGDATA

Logical - Restore

● CREATE INDEX can be costly
– Large speedup in 9.5

● Accelerate things
– fsync = off

– wal_level = minimal

– archive_mode = off

● If fsync = off
– Reenable it after!

– Drop OS caches

pg_restore

● Use single transaction -1 (less WAL generated)

● DROP DATABASE if crash

● Parallel restore -j
– Incompatible with -1

– Better using it in most cases

● Time depends on
– Data size

– Schema, objects to rebuild from scratch

Physical backup

● Dump files of the database

● Faster than logical

● Architecture, version and compile-option
dependent

● Cluster-level backup only

Physical - Methods

● FS-level snapshots
– Need to be atomic

– Including all tablespaces

● pg_basebackup

● Low-level
– pg_start_backup()

– Custom method: cp, rsync, tar, FS-snapshot

– pg_stop_backup()

pg_basebackup

● Configuration
– wal_level = [archive|hot_standby|logical]

– max_wal_senders >= 1

● -x to stream enough WAL segments in backup
itself

● Complete PGDATA backup

● Can map tablespaces to new location

● Impact
– Single-threaded

– Sequential read

WAL archiving

● Configuration
– archive_mode = on (or 'shared' in 9.5)

– archive_command = archive segment X

● In recovery
– restore_command = Get back segment X

WAL archiving - limitations

● Holes in WAL history
– archive_mode = shared

– Needs standbys

● pg_receivexlog
– Does archiving, like a standby for master

– Synchronous mode in 9.5

Physical - Restore

● PITR

● Time depends on distance to target
– WAL replay

● Effects
– Random writes

– Single threaded (startup process) + alpha

So...

● Backup time may not matter

● Restore time is critical

● Test your backups
– Nothing immediately in production

● Right solution may be to mix all methods
– Fewer backups, more WAL logs

– More backups, less WAL segments

– With pg_dump on top for disasters

● Backup policy
– Retention

– Frequency

Differential backups – Why?

● Delta backups
– Need prior full backup

– Used to rebuild newer full backups

● Why?
– More backups = More full backups

– Large data sets impact policy retention

– Full backup size <=> Time to take it and store it

Existing solutions

● pg_rman
– Differential backup

– Scan each relation file and fetches modified blocks

– Backups are smaller

– Actually slow on large sets

● barman

● pitrery

● pg_bman

● Etc. Tell me!

PostgreSQL 9.5

● WAL refactoring
– Track relation block changes in WAL records

– No need to look at the record type

– Generic approach

● pg_rewind
– Integrated in 9.5

– Uses similar logic

● Base for differential backup

WAL segments – block tracking
Relation files - blocks

Record 1

Segment

Record 2

Record N - 1

Record N

...

1 2 3 ... Nx

1 2 3 ... Ny

1 2 3 ... Nz

1 2 3 ... Nx

OID = x

OID = y

OID = z

OID = x

WAL segments – block mapping

● From WAL position (LSN) A to B

● LSN
– WAL position, like 0/14EBDA0

● Segment (16MB by default)
– 000000010000006300000027

Relation X: {2, 3, Nx}
Relation Y: {1}
Relation Z: {2, Nz}

Differential backup

● Last full backup taken
– Uses pg_start_backup(), LSN X

– Does backup, cp, tar, etc.

– pg_stop_backup()

● Differential
– Launches pg_start_backup(), LSN Y

– Scans WAL segments from X to Y and gets
mapping

– Fetch modified blocks

– pg_stop_backup()

Rebuilding full backup

● Determine last full backup

● Checks list of full backups up to wanted target

● Applies diff to relation data files

● Use backup_label of last diff backup

● Create recovery.conf

pg_arman

● Fork of pg_rman, largely simplified
– ERROR layer simplified

– Re-thinking of fancy options

– Many code simplifications

● Full and differential (page-level) backup

● Removal of page holes

● Thanks, Yury Zhuravlev (Postgres Pro)!

pg_arman - 2

● Restrictions - hint-bit updates
– wal_log_hints = on

– Page checksums => initdb -k

● Applies diff backups stupidly in chain on a file base

● Does not support backup using stream (could be done)

● Backup taken on same host as Postgres instance

● PostgreSQL license

● Pet project:
– https://github.com/michaelpq/pg_arman/

– Has documentation!

https://github.com/michaelpq/pg_arman/

Backup performance

● Data size ~ WAL segment quantity
– Full backups preferable

– Similar I/O read

● Data size >> WAL segment
– Differential backup

– May be costly if same blocks are always modified

● Important to leverage backup frequency

● Testing is important here!

pg_arman demonstration

 Usage:
 pg_arman OPTION init
 pg_arman OPTION backup
 pg_arman OPTION restore
 pg_arman OPTION show [DATE]
 pg_arman OPTION validate [DATE]
 pg_arman OPTION delete DATE

Improvements
● Relation map

– Used across multiple diff backups

– Generated and rebuilt at each backup

● Acceleration of restore time (critical)
– Multiple diff backup problem

– Reuse relation map

– Maximum load at backup time

● Stream mode
– Superuser-based

– File access functions

– Replication protocol

Thanks!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

