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Why backups?



  

In short

● Backups
– Methods

– Planning

– Retention

– Performance

● Restore
– Methods

– QE/QA

– Performance



  

About backups

● Replication

● Logical backups
– pg_dump

– pg_dumpall

● Physical backups
– pg_basebackup

– FS-level

– Etc.



  

Replication

● Live backups

● Fast

● Shortest restore time

● Those are not real backups!

● Delayed standbys leverage that.
– recovery_min_apply_delay in recovery.conf

– Delays transaction commits at replay



  

Logical backups

● pg_dump
– Use -Fc, custom format

● Compression with zlib
– After 3~5, usually no real difference

– Higher = More CPU

– Lower = More write I/O

● Other things
– Object-level granularity

– --jobs for parallel dump

● pg_dumpall -g



  

Logical - performance

● Single transaction

● Single backend – 1 CPU per each

● Fine for up to 100GB (still big)

● Postgres cache is fine

● Disk
– Throttled by disk I/O

– Better on separate disk than PGDATA



  

Logical - Restore

● CREATE INDEX can be costly
– Large speedup in 9.5

● Accelerate things
– fsync = off

– wal_level = minimal

– archive_mode = off

● If fsync = off
– Reenable it after!

– Drop OS caches



  

pg_restore

● Use single transaction -1 (less WAL generated)

● DROP DATABASE if crash

● Parallel restore -j
– Incompatible with -1

– Better using it in most cases

● Time depends on
– Data size

– Schema, objects to rebuild from scratch



  

Physical backup

● Dump files of the database

● Faster than logical

● Architecture, version and compile-option
dependent

● Cluster-level backup only



  

Physical - Methods

● FS-level snapshots
– Need to be atomic

– Including all tablespaces

● pg_basebackup

● Low-level
– pg_start_backup()

– Custom method: cp, rsync, tar, FS-snapshot

– pg_stop_backup()



  

pg_basebackup

● Configuration
– wal_level = [archive|hot_standby|logical]

– max_wal_senders >= 1

● -x to stream enough WAL segments in backup
itself

● Complete PGDATA backup

● Can map tablespaces to new location

● Impact
– Single-threaded

– Sequential read



  

WAL archiving

● Configuration
– archive_mode = on (or 'shared' in 9.5)

– archive_command = archive segment X

● In recovery
– restore_command = Get back segment X



  

WAL archiving - limitations

● Holes in WAL history
– archive_mode = shared

– Needs standbys

● pg_receivexlog
– Does archiving, like a standby for master

– Synchronous mode in 9.5



  

Physical - Restore

● PITR

● Time depends on distance to target
– WAL replay

● Effects
– Random writes

– Single threaded (startup process) + alpha



  

So...

● Backup time may not matter

● Restore time is critical

● Test your backups
– Nothing immediately in production

● Right solution may be to mix all methods
– Fewer backups, more WAL logs

– More backups, less WAL segments

– With pg_dump on top for disasters

● Backup policy
– Retention

– Frequency



  

Differential backups – Why?

● Delta backups
– Need prior full backup

– Used to rebuild newer full backups

● Why?
– More backups = More full backups

– Large data sets impact policy retention

– Full backup size <=> Time to take it and store it



  

Existing solutions

● pg_rman
– Differential backup

– Scan each relation file and fetches modified blocks

– Backups are smaller

– Actually slow on large sets

● barman

● pitrery

● pg_bman

● Etc. Tell me!



  

PostgreSQL 9.5

● WAL refactoring
– Track relation block changes in WAL records

– No need to look at the record type

– Generic approach

● pg_rewind
– Integrated in 9.5

– Uses similar logic

● Base for differential backup



  

WAL segments – block tracking
Relation files - blocks

Record 1

Segment

Record 2

Record N - 1

Record N

...

1 2 3 ... Nx

1 2 3 ... Ny

1 2 3 ... Nz

1 2 3 ... Nx

OID = x

OID = y

OID = z

OID = x



  

WAL segments – block mapping

● From WAL position (LSN) A to B

● LSN
– WAL position, like 0/14EBDA0

● Segment (16MB by default)
– 000000010000006300000027

Relation X: {2, 3, Nx}
Relation Y: {1}
Relation Z: {2, Nz}



  

Differential backup

● Last full backup taken
– Uses pg_start_backup(), LSN X

– Does backup, cp, tar, etc.

– pg_stop_backup()

●  Differential
– Launches pg_start_backup(), LSN Y

– Scans WAL segments from X to Y and gets
mapping

– Fetch modified blocks

– pg_stop_backup()



  

Rebuilding full backup

● Determine last full backup

● Checks list of full backups up to wanted target

● Applies diff to relation data files

● Use backup_label of last diff backup

● Create recovery.conf



  

pg_arman

● Fork of pg_rman, largely simplified
– ERROR layer simplified

– Re-thinking of fancy options

– Many code simplifications

● Full and differential (page-level) backup

● Removal of page holes

● Thanks, Yury Zhuravlev (Postgres Pro)!



  

pg_arman - 2

● Restrictions - hint-bit updates
– wal_log_hints = on

– Page checksums => initdb -k

● Applies diff backups stupidly in chain on a file base

● Does not support backup using stream (could be done)

● Backup taken on same host as Postgres instance

● PostgreSQL license

● Pet project:
– https://github.com/michaelpq/pg_arman/

– Has documentation!

https://github.com/michaelpq/pg_arman/


  

Backup performance

● Data size ~ WAL segment quantity
– Full backups preferable

– Similar I/O read

● Data size >> WAL segment
– Differential backup

– May be costly if same blocks are always modified

● Important to leverage backup frequency

● Testing is important here!



  

pg_arman demonstration

  Usage:
   pg_arman OPTION init
   pg_arman OPTION backup
   pg_arman OPTION restore
   pg_arman OPTION show [DATE]
   pg_arman OPTION validate [DATE]
   pg_arman OPTION delete DATE



  

Improvements
● Relation map

– Used across multiple diff backups

– Generated and rebuilt at each backup

● Acceleration of restore time (critical)
– Multiple diff backup problem

– Reuse relation map

– Maximum load at backup time

● Stream mode
– Superuser-based

– File access functions

– Replication protocol



  

Thanks!
Questions?
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